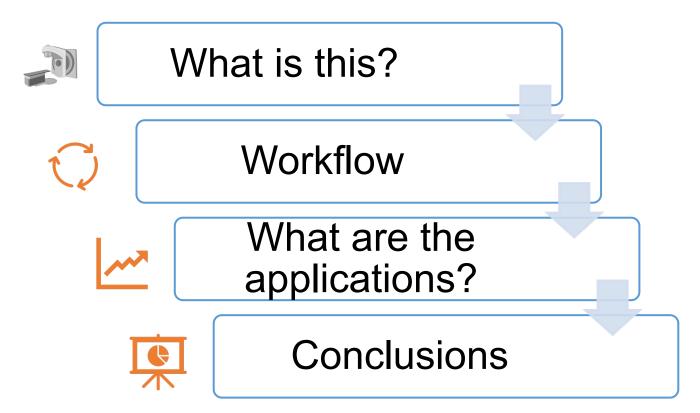


Radiomics in oncology: present and future

Carolina de la Pinta Alonso


Physician in radiation oncology, MD, PhD

Hospital Universitario Ramón y Cajal, Madrid, Spain

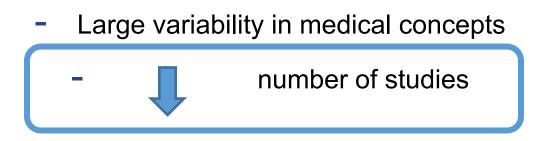
TABLE OF CONTENTS

Radiomics makes it possible to analyze and extract data from medical

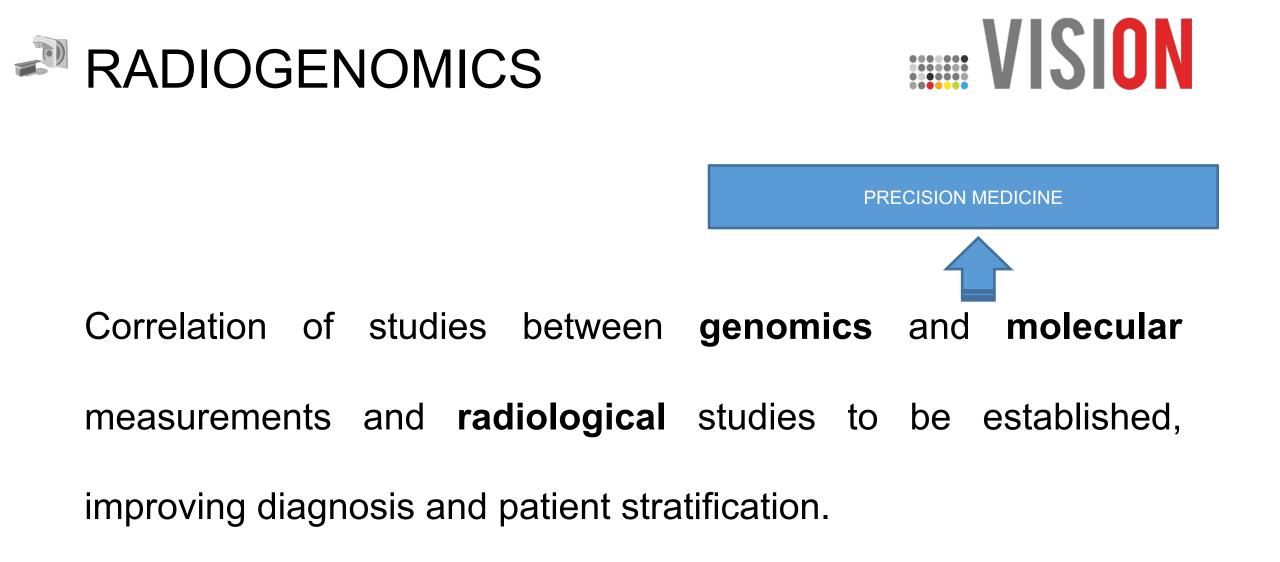
images, including quantitative and qualitative characteristics.

- CT, MRI and PET using computer software.
- More precise delimitation of tumor, the tumor microenvironment or alterations after treatment.

This requires:


- 1. Image acquisition
- 2. Dataset creation
- 3. Export of DICOM studies
- 4. Identification of the volume of interest (VOI) using segmentation tools
- 5. Feature extraction and qualification
- 6. Study of the data
- 7. Construction of a predictive model
- 8. Validation of the created models

The use of convolutional neural networks (CNNs) in medical image analysis is growing, outperforming traditional machine learning (ML) algorithms on large datasets.


Problems

Pre-training studies is proposed with promising results for different image analysis tasks.

Ziegelmayer S, et al. J Clin Med 2020;9:4013. Barat M, et al. Jpn J Radiol 2021;39:514–523. Weisberg EM, et al. Diagn Interv Imaging 2020;101:111–115. Kaissis G, et al. Eur Radiol Exp 2019;3:41.

Terminology	Short Definition
Radiomics	Quantitative approach to medical imaging, enhancing existing data through mathematical analysis [68].
Genomics	Study of whole genomes, including elements from genetics. Genomics uses a combination of recombinant DNA, DNA sequencing methods, and bioinformatics to sequence, assemble, and analyze the structure and function of genomes [69–71].
Radiogenomics	Genomics information that can be explained or decoded by radiomics and to develop methodology to create more-efficient predictive models [72].

Table 1. Short definitions for specific medical terms.

DNA = deoxyribonucleic acid.

Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971

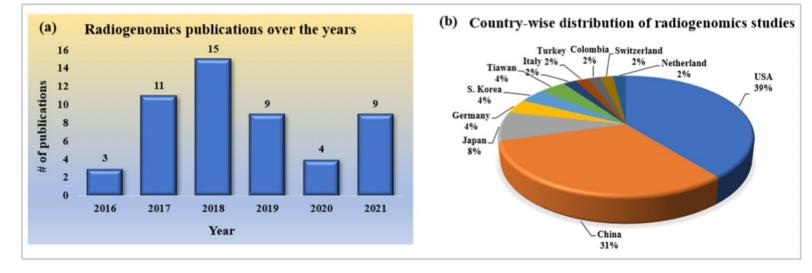


Figure 2. (a) Publication trends; (b) country-wise distribution of radiogenomics studies.

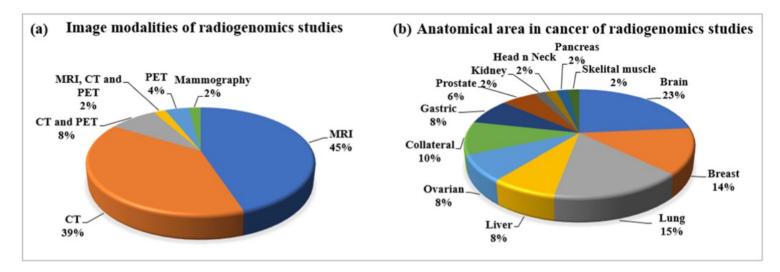
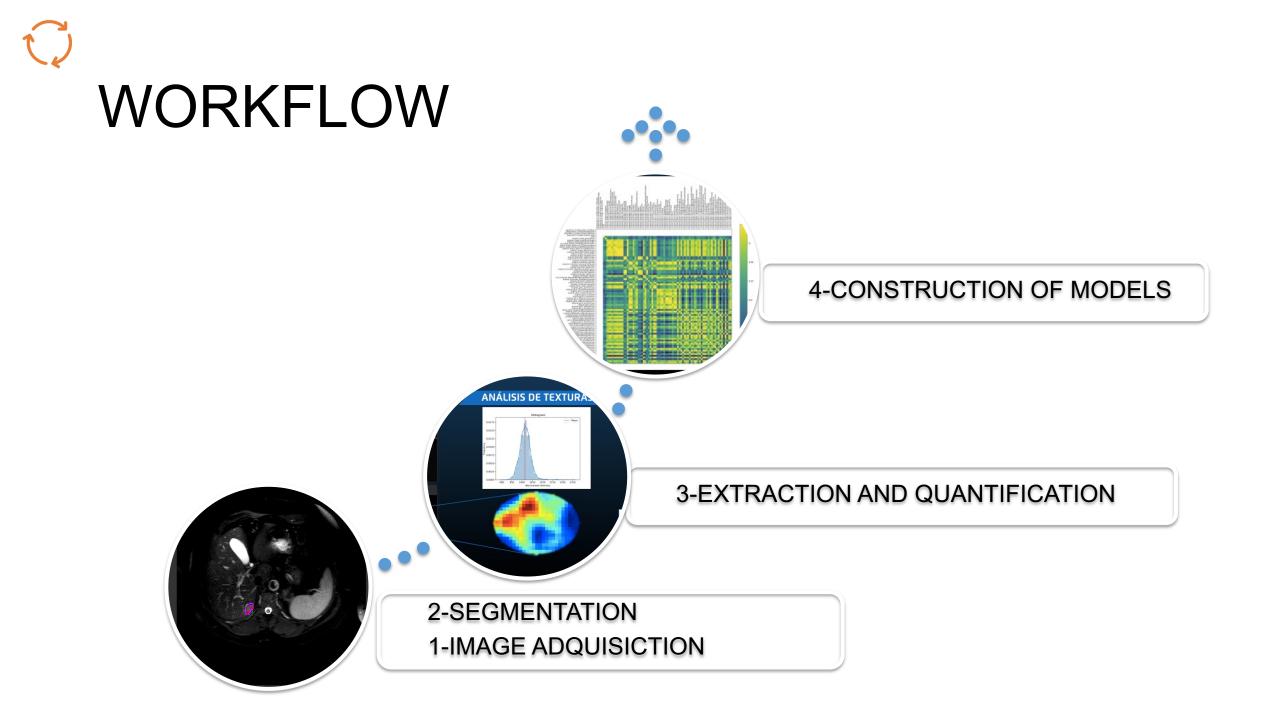



Figure 4. (a) Image modalities; (b) anatomical cancer in radiogenomics studies.

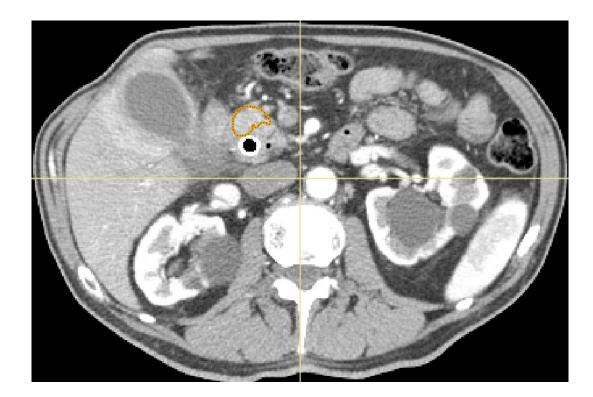
Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, Nath T, Paul S, Fouda MM, Kalra M, Saba L, Pareek G, Suri JS. Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel). 2022 Jun 9;14(12):2860.

1. Image acquisition and reconstruction

• **Characteristics:** kV, mAs, slice size, breath control method,

configuration, contrast.

- Standardization of image data
 - Can help to establish predictive models.
 - Important in the final results of the analysis (homogeneous criterion)

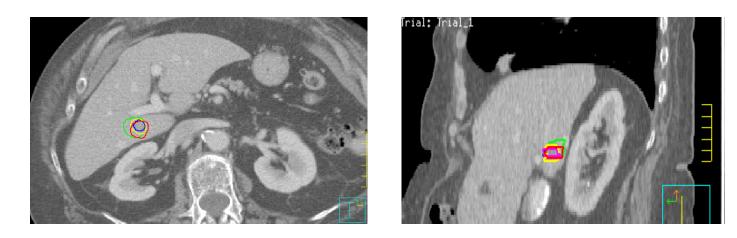

Radiomics based on non-contrast CT images has shown in some studies a higher efficiency compared to contrast CT images.

Q 2. Segmentation of the area of interest (I)

• ROI (Region of interest) = segmentation.

Q 2. Segmentation of the area of interest (II)

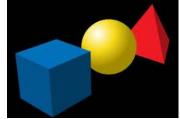
Types of segmentation: Manual, automatic, or semi-automatic.


- Gold standard → manual segmentation by experts but is operator dependent
- Automatic segmentation: uses preselected parameters and is ideal for its accuracy, reproducibility, and consistency but manual intervention is necessary to validate the automatic segmentation.
- There is no universal method, the same algorithm can give variable results.
- The semiautomatic segmentation is able to combine two previous procedures being the **most recommended**.

Q 2. Segmentation of the area of interest (III)

Is crucial, an error in this phase will modify the whole analisis.

Weisberg EM, et al. Diagn Interv Imaging 2020;101:111–115. Kaissis G, et al. Eur Radiol Exp 2019;3:41. Bartoli M, et al. Jpn J Radiol 2020;38:1111–1124


- 4 types of analysis:
- **1.** Morphological \rightarrow the most basic radiomics analysis
- 2. Statistical→ includes first-order (histogram) and highly-order features (texture)
- Regional→ intratumor heterogeneity and characteristics around the tumor
- **4.** Model-based \rightarrow is analyzed with a mathematical approach

• Morphological analysis includes:

Shape.

To evaluate physical characteristics and differentiates between malignant and benign lesions.

Include: diameter, volume, area under the curve (AUC), and wave.

Lesions are constructed in 3D images.

The most commonly used: maximum and minimum diameter, and volume.

Muhi A et al. J Magn Reson Imaging 2012;35:827–836. Zaheer A, et al. J Comput Assist Tomogr 2014;38:146–152. Cheng MF, et al. Sci Rep 2018;8:3651. Park S, et al. Diagn Interv Imaging 2020;101:555–564. Chu LC, etl al. AJR Am J Roentgenol 2019;213:349–357.

The volume is defined by counting the number of voxels in the tumor and multiplying by the volume of the voxel.

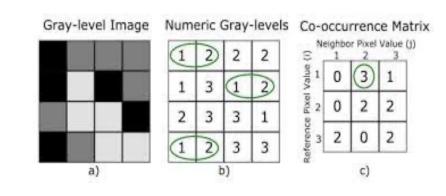
Volume is a **key parameter**, a short volume doubling time reflects high histological aggressiveness and suggests poor prognosis, volume is a tool for evaluating response to treatment.

Muhi A et al. J Magn Reson Imaging 2012;35:827–836. Zaheer A, et al. J Comput Assist Tomogr 2014;38:146–152. Cheng MF, et al. Sci Rep 2018;8:3651. Park S, et al. Diagn Interv Imaging 2020;101:555–564. Chu LC, etl al. AJR Am J Roentgenol 2019;213:349–357.

O 3. Extraction and quantification of features (IV)

- Is analyzed in histograms which are graphic representations of the intensity distribution in an image.
- Analysis **includes**:

Intensity


- Range, mean, median, standard deviation (SD), minimum, maximum, kurtosis, energy, entropy (describes the randomness of the surrounding intensities within a grayscale image), uniformity, variance, and skewness
- Can be used to predict the nature of the lesion and prognosis.
- Characteristics are dependent on the reconstruction and image acquisition parameters (cut size and voxel size).

Texture

- Describes the relationship between neighboring pixels and their distribution through the nodes.
- Determines the tumor's heterogeneity (differentiation between benign and malignant lesions).
- For texture extraction, the most used method includes second-order statistics and cooccurrence matrix characteristics constructed using number, distance, and angle of gray levels in the image.
- Includes: correlation, clustering, contrast, energy, and entropy.

> Wavelet

- Allows to decompose the image data into different frequency components and uses these data to extract characteristics related to the **texture** and **intensity** of the image.
- These are filters that transform an array of complex lines or radio waves.
- The most common is the **Coiflet wave transformation**.
- They are used in the diagnosis and evaluation of response to treatment.

- The relationship between the tumor and the surrounding healthy surface is another element of the tumor microenvironment.
- The discrete compaction is related to its circularity and this to the invasion around the tumor.
- The neighboring gray tone matrix is a parameter to differentiate gray tones, including busyness, complexity, and texture length.
- It is necessary to evaluate these data with statistical covariance.

4. Construction of predictive models and prognosis in a non-invasive method

- Relationships between radiomics parameters and clinical variables.
- This can be done from direct statistical analysis based on hypotheses on machine learning methods.

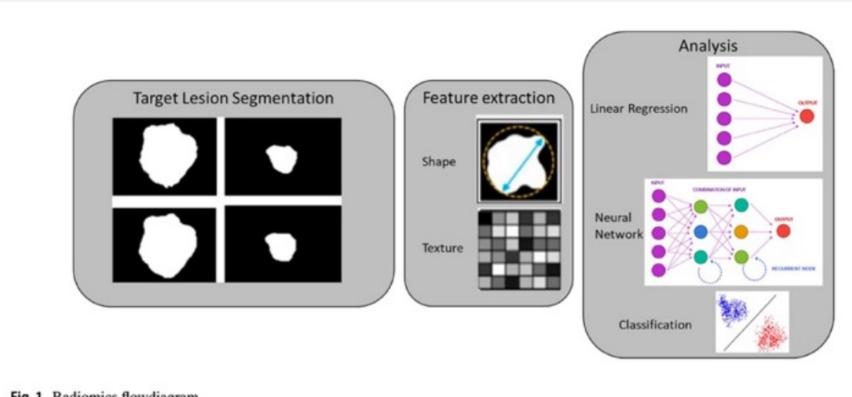
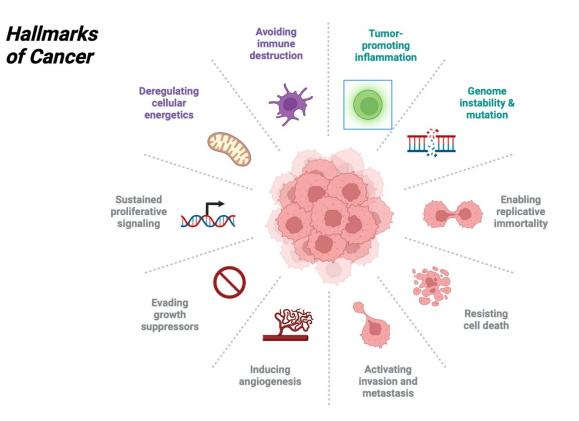



Fig. 1 Radiomics flowdiagram

Radiomics in medical imaging: pitfalls and challenges in clinical management Roberta Fusco et al. Japanese Journal of Radiology https://doi.org/10.1007/s11604-022-01271-4

WHAT ARE THE APPLICATIONS?

Differential diagnosis IN PANCREATIC LESIONS

VISION

Table 1

Radiomics studies in differentiation of pancreatic cystic lesions.

Studies	n	Туре	Model	Clinical	Segmentation	Features	Differentation between entities
Dmitriev et al. [23]	134	IPMN $(n = 74)$ MCN $(n = 14)$ SCA $(n = 29)$ SPN $(n = 17)$	Random forest classifier and convolutional neural networks (CNN)	Demographics	Semi- automated	Intensity, shape	84%
Wei et al. [24]	260	SCN, others	LASSO regression machine learning	Sex, location, moment of difference, mean rectangular fitting factor and size	Manual	Intensity texture	In the validation cohort ($n = 60$), sensitivity = 0.667, specificity = 0.818
Yang et al. [25]	53	MCN SCN	LASSO regression and random forest classifiers	Age, sex, location	Manual (two radiologist)	Texture	74% in 2 mm 83% in 5 mm
Hanania et al. [26]	53	IPMN	Logistic-regression model	Grade Fukuoka criteria	Manual (radiation oncology and radiologist)	360 radiomics features analyzed; 14 included in analysis	96%
Permuth et al. [27]	38	IPMN	Regression analysis	Age, sex, race, jaundice present, CA19-9, albumin, location, ductal communication, main duct dilation, size, solid component or mural nodule, high risk stigmata, worrisome features, 5 miRNA	Semi- automated	112 radiomics features analyzed; 14 included in analysis (texture, size and shape)	Combination 92%
Chakraborty et al. [28]	103	IPMN	Cox proportional hazards model	Age, size, solid component, pain, sex	Manual (radiologist)	12 intensity texture	80%, negative predictive value 94%

IPMN: intraductal papillary mucinous neoplasm, MCN: mucinous cystic neoplasm, SCA: serous cystadenoma of pancreas, SPN: solid pseudopapillary neoplasm, SCN: serous cystic neoplasm; LASSO: least absolute shrinkage and selection operator; CA19-9: carbohydrate antigen 19-9.

de la Pinta C. Radiomics in pancreatic cancer for oncologist: Present and future. Hepatobiliary Pancreat Dis Int. 2022 Aug;21(4):356-361. doi: 10.1016/j.hbpd.2021.12.006. Epub 2021 Dec 16. PMID: 34961674.

Differential diagnosis IN neuro

fferential diagnosis IN uroendocrine tumors				
Studies	n	Image	Features	Results
Lin et al. [30]	PNET $(n = 21)$ Intra-pancreatic spleen $(n = 13)$	СТ	Texture, entropy, skewness, kurtosis and uniformity	Less heterogeneous enhancement in arterial and portal phase in PNET (69% vs. 35%, $P = 0.06$; 100% vs. 29%, $P = 0.04$). Entropy and uniformity ($P < 0.01$). Uniformity with sensitivity of 85%-95% and specificity of 75%-83.3% to differentiate.
Choi et al. [31]	PNET $(n = 66)$: grade $1(n = 45)$; grade $2/3$ $(n = 21)$	СТ	Texture	Predictors of grade 2/3 were a well-defined margin (OR = 7.273). Low sphericity (OR = 0.409) in 2D arterial analysis, high skewness (OR = 1.972), low sphericity (OR = 0.408) in 3D analysis, low kurtosis (OR = 0.436), low sphericity in 2D portal (OR = 0.420) and in 3D (OR = 0.503) ($P < 0.05$), large surface area (OR = 2.007). Texture-based diagnosis was superior to CT findings (AUC = 0.774 vs. 0.683).
Canellas et al. [32]	Pre-surgery (<i>n</i> = 101)	СТ	Texture	Size larger than 2 cm was predictive of higher grade (OR = 3.3; P = 0.014). Presence of vascular involvement (OR = 25.2; $P = 0.03$), pancreatic duct dilatation (OR = 6.0; $P = 0.002$), presence of lymphadenopathy (OR = 25.2; $P = 0.003$), entropy (OR = 3.7; $P = 0.008$) were predictive of more aggressive tumors. Differences were observed in progression free survival for grade 1 versus grade 2 tumors for PNETs with vascular involvement; and for tumors with entropy ($P < 0.001$).
Li et al. [33]	n = 127: pancreas adenocarcinoma (n = 50) PNETs $(n = 77)$	СТ	Texture	Atypical PNETs had high mean, median, 5th, 10th and 25th percentiles ($P = 0.006$, 0.024, < 0.001, 0.001, 0.021, respectively) and low skewness ($P = 0.017$). No differences in 75th and 90th percentiles, kurtosis, and

PNET: pancreatic neuroendocrine tumor; CT: computed tomography; OR: odds ratio; AUC: area under curve.

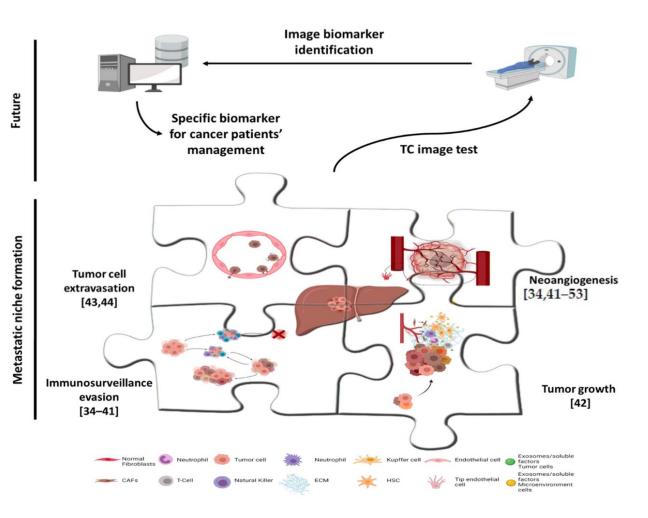
entropy between the two tumors.

PREDICTION: OVERALL SURVIVAL AND LOCAL CONTROL

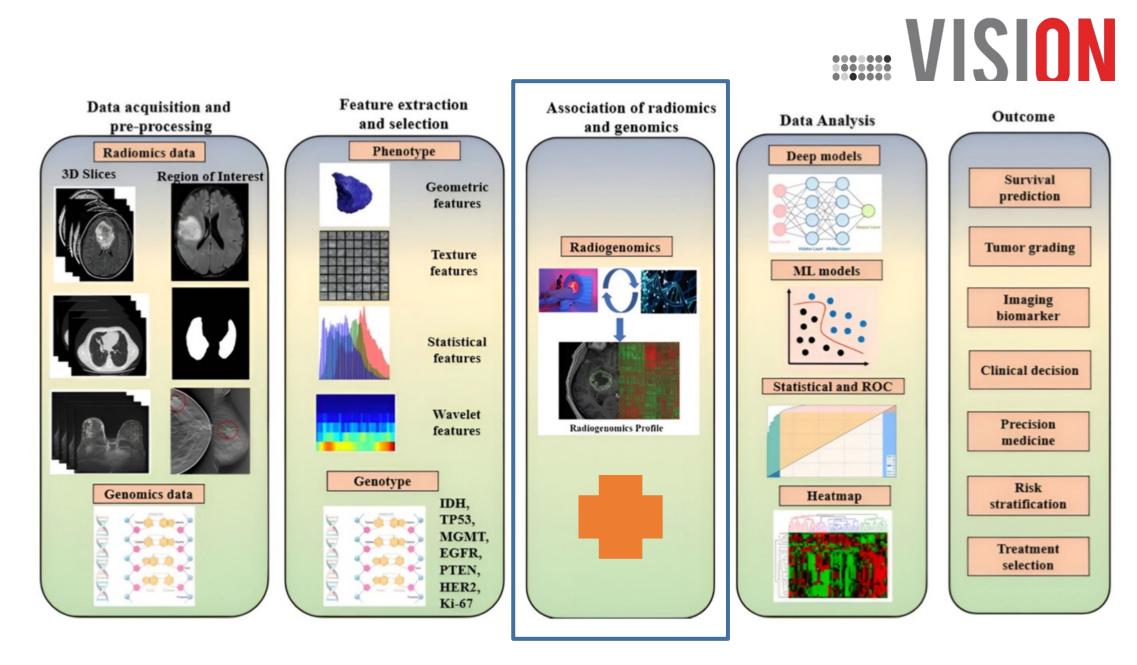
Lung

Table 1. Radiomics for prediction survival and local control.

StudynStageTreatmentImageRadiomic FeaturesSurvivalHuang ⁵² 282I, II-CTDFS: TextureParmar ⁵³ 464NSCLCPre-treatmentCTOS: Size, intensity, shape, texture, waveletCoroller ⁶¹ 182NSCLCPre-treatmentCTOS: Size, intensity, shape, texture, waveletSong ⁵¹ 199NSCLC-CTOS: WaveletFried ²¹ 91IIIRTCT/PETOS, LC, DMFS: Textura-clinical parametersGaneshan ²² I-IV NSCLCPre-treatmentCTOS: TextureDepeursinge ⁵⁴ 101I, AC, resectedSurgeryCTDFS: Textura+clinical parametersGrove ⁶⁹ 108Early-CTOS: Shape, textureBalagurunathan ⁶² 59NSCLC-CTOS: Shape, textureCarvalho ⁶³ 220I-IIIBCRTPETOS: Shape, intensity, texture and intensity-volume histogram)Li ⁴⁴ 92I-IIASBRTCTOS: Shape, intensity, textureSong ⁶⁵³ 152I-IVTKICTOS: WaveletHuynh ⁹⁹ 113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlCTOS: WaveletWattonen ⁶⁰ 45RecurrenceSBRTCTTexturePyka ⁴⁸ 45I-IIASBRTPETEntropyLovinfosse ⁶⁴ 63I-IISBRTPETEn	Table 1. Radionnes for prediction survival and local control.					
Huagé2282I, II-CTDFS: TextureParmar23464NSCLCPre-treatmentCTOS: Size, intensity, shape, texture, waveletCoroller ⁴¹ 182NSCLCCRTCTDMFS: First order statistics, texture, waveletSong ⁵¹ 199NSCLC-CTOS: WaveletFried ²¹ 91IIIRTCT/PETOS: CAUTRa-theinical parametersGaneshan ²² INVIAC, resectedSurgeryCTOS: StatureDepeursinge ⁵⁴ 101I, AC, resectedSurgeryCTOS: Shape, textureGrove ⁶⁹ 108Early-CTOS: Shape, textureGravalho ⁶³ 220IIIBCRTCTOS: Shape, textureAcrts ¹⁶ 647CRTCTOS: Shape, intensity, texture and intensity-volume histogramSong ⁶⁵ 132IAUSBRTCTOS: Shape, intensity, texture, shape Metastases: WaveletIdutone ⁴⁶⁹ 45RecurrenceSBRTCTSci First order statistics, texture, shape Metastases: WaveletJatistone ⁴⁶⁹ 45RecurrenceSBRTCTSci First order statistics, texture, shape Metastase: WaveletJatistone ⁴⁶⁹ 45RecurrenceSBRTCTSci First order statistics, texture, shape Metastase: WaveletJatistone ⁴⁶⁹ 45RecurrenceSBRTCTSci First order statistics, texture, shape Metastase: WaveletJatistone ⁴⁶⁹ 45RecurrenceSBRTCTSci First order statistics, texture, shape Meta	Study	n	Stage	Treatment	Image	Radiomic Features
Parmar23464NSCLCPre-treatmentCTOS: Size, intensity, shape, texture, waveletCoroller ⁴¹ 182NSCLCCRTCTDMFS: First order statistics, texture, waveletSong ⁵¹ 199NSCLC-CTOS: WaveletFried ²¹ 91IIIRTCT/PETOS: Textura+clinical parametersGaneshan ²² I-IV NSCLCPre-treatmentCTOS: TextureDepeursinge ⁶⁴ 101I, AC, resectedSurgeryCTDFS: TextureGrove ⁶⁹ 108Early-CTOS: Shape, textureGravalho ⁶³ 200I-IIIBCRTPETOS: Shape, textureIcavalho ⁶³ 220I-IIBSBRTCTOS: Shape, intensity, texture and intensity-volume histogram)Li ⁶⁴ 92I-IIASBRTCTOS: Shape, intensity, texture, shape Metastases: WaveletSong ⁶⁵ 152I-IVTSICTOS: Shape, intensity, texture, shape Metastases: WaveletI-uond ⁶⁰ 45RecurrenceSBRTCTTextureMattonen ⁴⁰ 45RecurrenceSBRTCTTextureI-uond ⁶⁰ 45I-IIASBRTPETHoropyI-uond ⁶⁰ 45I-IIASBRTCTTextureMattonen ⁴⁰ 45I-IIASBRTPETHoropyI-uond ⁶⁰ 45I-IIASBRTPETHoropyI-uond ⁶⁰ 45I-IIASBRTPETHoropyI-uond ⁶¹ 45 <t< td=""><td>Survival</td><td></td><td></td><td></td><td></td><td></td></t<>	Survival					
Coroller ⁴¹ 182NSCLCCRTCTDMFS: First order statistics, texture, waveletSong ⁵¹ 199NSCLC-CTOS: WaveletFried ²¹ 91IIIRTCT/PETOS, LC, DMFS: Textura+clinical parametersGaneshan ²² I-IV NSCLCPre-treatmentCTOS: TextureDepeursinge ⁵⁴ 101I, AC, resectedSurgeryCTDFS: TextureGrove ⁶⁹ 108Early-CTOS: Shape, textureBalagurunathan ⁶² 59NSCLC-CTOS: Shape, textureCarvalho ⁶³ 220I-IIIBCRTPETOS: Morphology and clinical parametersLi ⁶⁴ 92I-IIASBRTCTOS: Shape, intensity, textureSong ⁶⁵ 152I-IVTKICTOS: WaveletHuynh ³⁹ 113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlCTSi First order statistics, texture, shape Metastases: WaveletMattonen ⁴⁰ 45RecurrenceSBRTCTTexturePyka ⁴⁸ 45I-IIASBRTPETEntropyLovinfosse ⁶⁶ 63I-IISBRTPETRadiomics and histologyWu ⁶⁷ 101ISBRTPETRadiomics and histology	Huang ⁵²	282	I, II	-	СТ	DFS: Texture
Song 51 199NSCLC-CTOS: WaveletFried 21 91IIIRTCT/PETOS, LC, DMFS: Textura+clinical parametersGaneshan ²² I-IV NSCLCPre-treatmentCTOS: TextureDepeursinge 54 101I, AC, resectedSurgeryCTDFS: TextureGrove 69 108Early-CTOS: Shape, textureBalagurunathan 62 59NSCLC-CTOS: Shape, textureCarvalho 63 200I-IIIBCRTPETOS: Delta radiomics (volume, texture and intensity-volume histogram)Li 64 92I-IIASBRTCTOS: Shape, intensity, textureSong 65 152I-IVTKICTOS: Shape, intensity, texture, shape Metastases: WaveletHuynh 39 13I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletMattonen 40 45RecurrenceSBRTCTTexture $^{Pyka^{48}}$ 45I-IIASBRTPETEntropy $^{Var}^{7}$ 101ISBRTPETMationeitology $^{Var}^{7}$ 101ISBRTPETTexture $^{Var}^{67}$ 101ISBRTPETReture $^{Var}^{67}$ 101ISBRTPETTexture $^{Var}^{67}$ 101ISBRTPETTexture $^{Var}^{67}$ 101ISBRTPETTextu	Parmar ²³	464	NSCLC	Pre-treatment	CT	OS: Size, intensity, shape, texture, wavelet
Fried*191IIIRTCT/PETOS, LC, DMFS: Textura+clinical parametersGaneshan*2I-IV NSCLCPre-treatmentCTOS: TextureDepeursinge54101I, AC, resectedSurgeryCTDFS: TextureGrove*9108Early-CTOS: Shape, textureBalagurunathan6259NSCLC-CTOS: Shape, textureCarvalho63220I-IIIBCRTPETOS: Morphology and clinical parametersLif4492I-IIASBRTCTOS: Shape, intensity, textureAerts ¹⁹ 647CRTCTOS: Shape, intensity, textureSong65152I-IVKIICTOS: Shape, intensity, texture, shape Metastases: WaveletI-Muynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletMattonen4045RecurrenceSBRTCTEarlyPyka4645I-IIASBRTCTEarlyI-Nirosse6663I-IISBRTPETEarlopyI-Nirosse6663I-IISBRTPETEarlopyI-Nirosse6663I-IISBRTPETEarlopyI-Nirosse6663I-IISBRTPETEarlopyI-Nirosse6663I-IISBRTPETEarlopyI-Nirosse66101ISBRTPETEarlopyI-Nirosse6663I-IISBRTPETEarlopyI-Nirosse6663 <td>Coroller⁶¹</td> <td>182</td> <td>NSCLC</td> <td>CRT</td> <td>СТ</td> <td>DMFS: First order statistics, texture, wavelet</td>	Coroller ⁶¹	182	NSCLC	CRT	СТ	DMFS: First order statistics, texture, wavelet
Ganeshan22I-IV NSCLCPre-treatmentCTOS: TextureDepeursinge54101I,AC, resectedSurgeryCTDFS: TextureGrove69108Early-CTOS: Shape, textureBalagurnathan6259NSCLC-CTOS: Shape, textureCavalho63220I-IIBCRTPETOS: Delta radionics (volume, texture and intensity-volume histogram) Li^{64} 92J-IIASBRTCTOS: Shape, intensity, textureAerts ¹⁹ 647CRTCTOS: Shape, intensity, textureSong65152I-IVTKICTOS: First order statistics, texture, shape Metastases: WaveletI-uvnh39113I, IISBRTCTSer textureMattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETIntensity $Lovinfosse^{66}$ 63I-IISBRTPETTexture Wu^{q7} 101ISBRTPETRationeria parameters	Song ⁵¹	199	NSCLC	-	CT	OS: Wavelet
Dependence Grove49101I, AC, resectedSurgeryCTDFS: TextureGrove49108Early-CTOS: Shape, textureBalagurunathan6259NSCLC-CTOS: Shape, textureCarvalho63220I-IIIBCRTPETOS: Delta radiomics (volume, texture and intensity-volume histogram) Li^{64} 92I-IIASBRTCTOS: Morphology and clinical parametersAerts ¹⁹ 647CRTCTOS: Shape, intensity, textureSong65152I-IVTKICTOS: Shape, intensity, texture, shape Metastases: WaveletHuynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletMattonen4045RecurrenceSBRTCTTexturePyka ⁴⁸ 45I-IIASBRTPETEntropyLovinfosse ⁶⁶ 63I-IISBRTPETEntropyWu ⁶⁷ 101ISBRTPETRadiomics and histology	Fried ²¹	91	III	RT	CT/PET	OS, LC, DMFS: Textura+clinical parameters
Grove49108Early-CTOS: Shape, textureBalagurunathan6259NSCLC-CTOS: Shape, textureCarvalho63220I-IIIBCRTPETOS: Delta radiomics (volume, texture and intensity-volume histogram)Li6492I-IIASBRTCTOS: Shape, intensity, textureAerts19647CRTCTOS: Shape, intensity, textureSong65152I-IVTKICTOS: Shape, intensity, texture, shape Metastases: WaveletHuynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal control	Ganeshan ²²		I-IV NSCLC	Pre-treatment	CT	OS: Texture
Balagurunathan 6259NSCLC $-$ CTOS: Shape, textureCarvalho 63220I-IIIBCRTPETOS: Delta radiomics (volume, texture and intensity-volume histogram) Li^{64} 92I-IIASBRTCTOS: Morphology and clinical parametersAerts19647CRTCTOS: Shape, intensity, textureSong65152I-IVTKICTOS: WaveletHuynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlEMattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETEntropyLovinfosse66663I-IISBRTPETEntropyWu ⁶⁷ 101ISBRTPETRadiomics and histology	Depeursinge ⁵⁴	101	I, AC, resected	Surgery	CT	DFS: Texture
Carvalho220I-IIIBCRTPETOS: Delta radiomics (volume, texture and intensity-volume histogram) Li^{64} 92I-IIASBRTCTOS: Morphology and clinical parametersAerts19647CRTCTOS: Shape, intensity, textureSong65152I-IVTKICTOS: WaveletHuynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlSBRTCTTextureMattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETEntropyLovinfosse6663I-IISBRTPETRedurenceWu ⁶⁷ 101ISBRTPETRadiomics and histology	Grove ⁴⁹	108	Early	-	CT	OS: Shape, texture
Life92I-IIASBRTCTOS: Morphology and clinical parametersAerts19647CRTCTOS: Shape, intensity, textureSong65152I-IVTKICTOS: WaveletHuynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlVVSBRTCTTextureMattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETEntropyLovinfosse6663I-IISBRTPETTextureWu ⁶⁷ 101ISBRTPETRadiomics and histology	Balagurunathan ⁶²	59	NSCLC	-	СТ	OS: Shape, texture
Aerts 19 647 CRTCTOS: Shape, intensity, textureSong 65152I-IVTKICTOS: WaveletHuynh 39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal control	Carvalho ⁶³	220	I-IIIB	CRT	PET	OS: Delta radiomics (volume, texture and intensity-volume histogram)
Song65152I-IVTKICTOS: WaveletHuynh39113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlMattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETEntropyLovinfosse6663I-IIISBRTPETTextureWu67101ISBRTPETRadiomics and histology	Li ⁶⁴	92	I-IIA	SBRT	СТ	OS: Morphology and clinical parameters
Huynh ³⁹ 113I, IISBRTCTOS: First order statistics, texture, shape Metastases: WaveletLocal controlKattonen ⁴⁰ 45RecurrenceSBRTCTTextureMattonen ⁴⁰ 45I-IIASBRTPETEntropyPyka ⁴⁸ 45I-IIASBRTPETTextureLovinfosse ⁶⁶ 63I-IIASBRTPETTextureWu ⁶⁷ 101ISBRTPETRadiomics and histology	Aerts ¹⁹	647		CRT	СТ	OS: Shape, intensity, texture
Local controlSBRTCTFextureMattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETEntropyLovinfosse6663I-IISBRTPETTextureWu67101ISBRTPETRadiomics and histology	Song ⁶⁵	152	I-IV	TKI	СТ	OS: Wavelet
Mattonen4045RecurrenceSBRTCTTexturePyka4845I-IIASBRTPETEntropyLovinfosse6663I-IISBRTPETTextureWu67101ISBRTPETRadiomics and histology	Huynh ³⁹	113	I, II	SBRT	СТ	OS: First order statistics, texture, shape Metastases: Wavelet
Pyka ⁴⁸ 45I-IIASBRTPETEntropyLovinfosse ⁶⁶ 63I-IISBRTPETTextureWu ⁶⁷ 101ISBRTPETRadiomics and histology	Local control					
Lovinfosse63I-IISBRTPETTextureWu67101ISBRTPETRadiomics and histology	Mattonen ⁴⁰	45	Recurrence	SBRT	CT	Texture
Wu ⁶⁷ 101 I SBRT PET Radiomics and histology	Pyka ⁴⁸	45	I-IIA	SBRT	PET	Entropy
	Lovinfosse ⁶⁶	63	I-II	SBRT	PET	Texture
	Wu ⁶⁷	101	Ι	SBRT	PET	Radiomics and histology
Cook ²⁰ 53IB-IIICRTPETCoarseness, contrast, busyness	Cook ²⁰	53	IB-III	CRT	PET	Coarseness, contrast, busyness
Kang ⁵⁵ 116 III CRT PET SUVmax, AUC-CSH	Kang ⁵⁵	116	III	CRT	PET	SUVmax, AUC-CSH
Vaidya ⁶⁸ 27 IV SBRT CT/PET IVH in PET, COV in CT	Vaidya ⁶⁸	27	IV	SBRT	CT/PET	IVH in PET, COV in CT


CT: computed tomography; DFS: disease free survival; NSCLC: non-small cell lung cancer; CRT: chemoradiotherapy, OS: overall survival; RT: radiotherapy; PET: positron emission tomography; LC: local control; DMFS: distant metastases free survival; AC: adenocarcinoma; SBRT: stereotactic body radiotherapy; TKI: tirosin kinasa inhibitors; SUV: standardized uptake value; AUC-CSH: area under curve of the cumulative SUV-volume histogram; IVH: intensity volume histogram ; COV: coefficient of variation

de la Pinta C, Barrios-Campo N, Sevillano D. Radiomics in lung cancer for oncologists. J Clin Transl Res. 2020 Sep 2;6(4):127-134. PMID: 33521373; PMCID: PMC7837741.



- The genetic study of tumors has allowed the development of targeted therapies, and the stratification of patients in terms of risk of relapse, prognosis, prediction of response and survival.
- The correlation of genetic alterations or tumor microenvironment and radiological findings allows the use of these imaging tests as a non-invasive tool for personalized medicine.

Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, Nath T, Paul S, Fouda MM, Kalra M, Saba L, Pareek G, Suri JS. Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel). 2022 Jun 9;14(12):2860.

LIVER METASTASES

Li et al., 2017 [10]

Retrospective

	\sum
--	--------

Imaging **Tools for Radiomics** Study Sample Size Statistical Model Construction Design Study Cohorts and Validation Modalities Calculations Early diagnosis of colorectal cancer metastasis Linear regression model, Pearson Becker et al., 2018 [5] Preclinical MRI 8 male mice One cohort MATLAB routine correlation test and hierarchical cluster analysis Two cohorts. Patients with metastases Kruskal-Wallis test, inter-correlated in follow-up of ≥ 24 months (n = 67); 91 CRC without LM at Philips Intellispace Portal features and Bayesian-optimized Taghavi et al., 2021 [6] Retrospective CT and patients who developed software and PyRadiomics random forest was used for prediction diagnosis metachronous liver metastases <24 models. months (n = 24). No validation Student's t test or Mann-Whitney U Three cohorts. Patients without LM test. ROC analyses to determine the (n = 15), with synchronous LM (n = 10)potential diagnostic performance of Rao et al., 2014 [7] CT 29 CRC patients and metachronous LM within 18 MATLAB routine Retrospective the respective texture parameters for months following primary staging diagnosing the presence of metastatic (n = 4). No validation disease. Two cohorts. 54 patients with LM and Models were evaluated with 54 without LM. Python in Anaconda3 indicators of accuracy, sensitivity, MRI The results of the one-round Liang et al., 2019 [8] Retrospective 108 rectal cancer patients platform with Scikit-learn specificity and AUC, and compared by cross-validation were stabilized and and Matplotlib packages. DeLong test. representative. MATLAB Image Processing Two machine learning models: a 150 liver tumors. 50 HCC, Toolbox, Signal Processing logistic classifier model with an elastic Oyama et al., 2019 [9] Retrospective MRI 50 LM and 50 HHs in 37, 23 One cohort. Toolbox, Statistics and net penalty and extreme gradient and 33 patients Machine Learning Toolbox, boosting (XGBoost) and Wavelet Toolbox Kruskal-Walls test, ROC curve and AUC analysis to differentiate three R software (R Core Team, Three cohorts. HHs (n = 55), LM subtypes. K-nearest neighbor classifier

(n = 67) and HCC (n = 40).

The test datasets validated the

reliability of the models

Table 1. Clinical benefits of radiomic and radiogenomics in CRC liver metastatic patients.

de la Pinta C, Castillo ME, Collado M, Galindo-Pumariño C, Peña C. Radiogenomics: Hunting Down Liver Metastasis in Colorectal Cancer Patients. Cancers (Basel). 2021 Nov 5;13(21):5547.

162 patients

MRI

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 857381

model, back-propagation artificial

neural network classifier model,

support vector machine and logistic

regression were used for improving accuracy for classifier.

Vienna, Austria) and

MATLAB R2013b

(Mathworks, Natick, MA,

USA)

3 of 16

~~~



| Table 1. Cont. |
|----------------|
|----------------|

| Study                       | Design                     | Imaging<br>Modalities | Sample Size                                                                                                                                                                                                                                                                 | Study Cohorts and Validation                                                                                                                                      | Tools for Radiomics<br>Calculations    | Statistical Model Construction                                                                                                                                                                                                    |
|-----------------------------|----------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rahmim et al., 2019 [25]    | Retrospective              | FDG PET/CT            | 52 CRLM patients                                                                                                                                                                                                                                                            | One cohort                                                                                                                                                        | Hermes Hybrid Viewer<br>PDR and MATLAB | Kaplan–Meier and Cox proportional<br>hazards models                                                                                                                                                                               |
| Dercle et al., 2020 [26]    | Retrospective              | СТ                    | Two cohorts. Randomly assigned (2:1)<br>to training or validation sets.<br>Predicted tumor sensitivity to<br>667 CRLM patients treatment was measured using AUC<br>in the validation sets of the four<br>cohorts consisting of patients that<br>were not used for training. |                                                                                                                                                                   | MATLAB (Mathworks,<br>Natick, MA, USA) | Variance and v2 test were performed<br>to compare categorical variables. Cox<br>regression was used to investigate the<br>effect of survival variables, and<br>log-rank test was used to compare<br>survival times of two groups. |
| Dohan et al., 2019 [27]     | Multicenter<br>prospective | СТ                    | 491 CRLM patients treated<br>by FOLFIRI and<br>bevacizumab                                                                                                                                                                                                                  | Two cohorts. Training cohort in 120<br>patients, and validate cohort in 110<br>patients. External validation was<br>performed in another cohort of 40<br>patients | TexRAD Ltd., (Somerset,<br>UK)         | Multivariable Cox, Kaplan–Meier and<br>log-rank                                                                                                                                                                                   |
| Ravanelli et al., 2019 [28] | Retrospective              | СТ                    | 43 CRLM patients                                                                                                                                                                                                                                                            | Two cohorts. 23 treated with<br>bevacizumab-containing<br>chemotherapy (group A), and 20 with<br>standard chemotherapy (group B)                                  | MATLAB (Natick, MA,<br>USA)            | Multivariable logistic regression                                                                                                                                                                                                 |

CT: computed tomography; MRI: magnetic resonance imaging; FDG PET/CT: fluorodeoxyglucose positron emission tomography/computed tomography; CRC: colorectal carcinoma; LM: liver metastases; CRCLM: colorectal carcinoma liver metastases; HCC: hepatocellular carcinoma; HHs: hepatic hemangiomas; FLLs: focal liver lesions; AUC: area under curve; ROC: receiver operating characteristic.

## PROSTATE CANCER



#### Table 4. Overview of radiogenomic literature on prostate cancer.

|                                                                                                                                  |                                                                                        |                                                                                                                                                                                                                                       | 1                                                                                                                                                       |           |          |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| Reference                                                                                                                        | Molecule Studied                                                                       | Molecule Studied Imaging Results<br>Performed                                                                                                                                                                                         |                                                                                                                                                         | Approach  | Method   |
| McCann et al. [124]                                                                                                              | PTEN                                                                                   | MRI                                                                                                                                                                                                                                   | Perfusion imaging<br>contrast uptake,<br>T2-weighted<br>signal-intensity<br>skewness                                                                    | Classical | Radiomic |
| Stoyanova et al. [158]                                                                                                           | General gene MRI Radiomic signatures                                                   |                                                                                                                                                                                                                                       | Classical                                                                                                                                               | Radiomic  |          |
| Renard-Penna et al.<br>[119]                                                                                                     | RNA expression signature<br>derived from cell cycle<br>proliferation genes (Prolaris®) | mpMRI                                                                                                                                                                                                                                 | Correlation with Gleason score (r = $0.199$ , $p = 0.04$ ) and PIRADS sum score (r = $0.26$ , $p = 0.007$ )                                             | Classical | Radiomic |
| Jamshidi et al. [125]                                                                                                            | Whole-exosome DNA sequencing                                                           | mpMRI                                                                                                                                                                                                                                 | No statistically significant linear correlation<br>between individual mutations and mpMRI<br>imaging parameters or PIRADS scores (p =<br>0.3)           | Classical | Radiomic |
| Houlahan et al. [130] Small nucleolar RNAs                                                                                       |                                                                                        | mpMRI                                                                                                                                                                                                                                 | Elevated snoRNA abundance may be a novel<br>hallmark of nimbotic tumors (AUC: 0.87;<br>95%CI: 0.75–0.99)                                                | Classical | Radiomic |
| Li P et al. [159] Differentially expressed genes                                                                                 |                                                                                        | MRI                                                                                                                                                                                                                                   | MRI visibility (AUC: 0.86), progression-free<br>survival HR = 2.53 (1.55–4.11), p < 0.001<br>BCR-free survival HR = 1.3 (1.04–1.63), p =<br>0.021       | Classical | Radiomic |
| Eineluoto et al. [160] PTEN and ERG                                                                                              |                                                                                        | PTEN and ERG MRI MRI MRI-invisible lesions had less PTEN loss and ERG-positive expression compared with patients with MRI-invisible lesions (17.2% vs. 43.3%, p = 0.006; 8.6% vs. 20.0%, p = 0.125)                                   |                                                                                                                                                         | Classical | Radiomic |
| Hectors et al. [161]                                                                                                             | ors et al. [161] 40 gene expression signatures plus Decipher®                          |                                                                                                                                                                                                                                       | Prediction of Gleason score of 8 or greater<br>(AUC 0.72) and prediction of a Decipher <sup>®</sup><br>score of 0.6 or greater (AUC 0.84).              | Classical | Radiomic |
| Li L et al. [162] Decipher®                                                                                                      |                                                                                        | MRI                                                                                                                                                                                                                                   | Model outperformed the prediction using<br>PIRADS v2 (AUC = 0.67), and comparable<br>performance with Gleason grade group<br>(AUC = 0.80)               | Classical | Radiomic |
| Sun et al. [163] Full transcriptome genetic profiles                                                                             |                                                                                        | mpMRI                                                                                                                                                                                                                                 | Weak association of mpMRI features and hypoxia gene expression ( $p < 0.05$ ).                                                                          | Classical | Radiomic |
| Fischer et al. [27] Gene and miRNA expression<br>(Alanyl membrane<br>aminopeptidase,<br>microRNA-mir-217, mir-592,<br>mir-6715b) |                                                                                        | mpMRI                                                                                                                                                                                                                                 | T2c and T3b prostate cancer stages being<br>highly correlated with aggressiveness on<br>related imaging features (average $r = \pm 0.75$ )              | Classical | Radiomic |
| Wibmer et al. [150] Prolaris <sup>®</sup> test                                                                                   |                                                                                        | MRI                                                                                                                                                                                                                                   | ECE on MRI had significantly higher mean<br>cell cycle risk score (reader 1: 3.9 vs. 3.2, <i>p</i> =<br>0.015; reader 2: 3.6 vs. 3.2, <i>p</i> = 0.045) | Classical | Radiomic |
| Vander-Weele et al. PTEN mpMRI                                                                                                   |                                                                                        | Imaging uptake parameters showing<br>mathematical correlation with PTEN<br>expression ( $r = 0.25$ , $p < 0.1$ and $r = 0.43$ , $p < 0.01$ ), and T2w unevenness also showed<br>some correlation tendency ( $r = -0.25$ , $p < 0.1$ ) | Classical                                                                                                                                               | Radiomic  |          |
| Switlyk et al. [165]                                                                                                             | PTEN                                                                                   | MRI                                                                                                                                                                                                                                   | ADC was negatively correlated with Gleason score ( $p = 0.001$ ) and tumor size ( $p = 0.023$ )                                                         | Classical | Radiomic |
|                                                                                                                                  |                                                                                        |                                                                                                                                                                                                                                       | F                                                                                                                                                       |           |          |

Ferro M, et al. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971

ADC = apparent diffusion coefficient; AUC = area under the curve; DNA = deoxyribonucleic acid; ECE = extracapsular extension; ERG = ETS-related gene; mpMRI = multiparametric magnetic resonance imaging; miRNA = micro ribonucleic acid; PIRADS = prostate imaging reporting and data system; PTEN = phosphatase and tensin homolog; T2w = T2-weighted.



#### Table 3. Compilations of studies on the association of imaging and genomics.

| Biomarker                    | Description                                                        | Test Source           | Analysis                                                                                 | Study                         | Results                                                                                                                                                                                                                                                 |
|------------------------------|--------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prostate cancer<br>antigen 3 | Prostate-specific<br>mRNA<br>quantification                        | Prostate biopsy       | Negative prior biopsy                                                                    | De Luca et al. [138]          | Significant association between<br>PCA3 score and PI-RADS grade<br>groups 3, 4, and 5 ( <i>p</i> = 0.006)                                                                                                                                               |
|                              |                                                                    |                       | Two negative prostate<br>biopsies                                                        | Alkasab et al. [139]          | PCA3 not statistically correlated<br>with PCa diagnosis ( $p = 0.128$ )<br>and PCA3 associated with<br>high-grade PCa at final<br>pathology ( $p = 0.0435$ )                                                                                            |
|                              |                                                                    |                       | No prior biopsy                                                                          | Fernstermaker et al.<br>[140] | PCA3 associated with MRI suspicion score of 2 and 3 ( $p = 0.004$ ), not 4 and 5 ( $p = 0.340$ )                                                                                                                                                        |
|                              |                                                                    |                       | Negative prior biopsy                                                                    | Perlis et al. [141]           | Normal PCA3 score gave a<br>negative predictive value of 100%<br>(p < 0.0001)                                                                                                                                                                           |
| Decipher test®               | 22 RNA markers<br>for prognosis and<br>prediction of<br>metastasis | RP or prostate biopsy | Low and intermediate<br>PCa                                                              | Martin et al. [142]           | Decipher <sup>®</sup> biopsy genomic test<br>was associated with Gleason<br>grade group and it was<br>independent of PIRADSv2 score                                                                                                                     |
|                              |                                                                    |                       | Defining the favorable<br>intermediate-risk<br>prostate cancer                           | Falagario et al. [143]        | Unfavorable intermediate-risk<br>category ( $p < 0.001$ ) and<br>Decipher <sup>®</sup> test ( $p = 0.012$ ) were<br>statistically significant predictors<br>of adverse pathology; mpMRI<br>did not maintain statistical<br>significance ( $p = 0.059$ ) |
|                              |                                                                    |                       | Prediction of BCR                                                                        | Jambor et al. [144]           | Decipher <sup>®</sup> genomic score and<br>mpMRI could not improve<br>predictive performance of<br>biochemical recurrence compared<br>with the individual use of these<br>features                                                                      |
|                              |                                                                    |                       | mpMRI could predict<br>aggressive prostate<br>cancer features                            | Beksac et al. [145]           | Association of Decipher <sup>®</sup> score<br>was significantly with lesion size<br>(p = 0.03), PIRADS score $(p = 0.02)and extraprostatic extension (p = 0.01)$                                                                                        |
|                              |                                                                    |                       | Correlation between<br>MRI phenotypes of PCa<br>as defined by PI-RADS<br>v2 and Decipher | Purysko et al. [146]          | MRI-visible lesions had higher<br>Decipher <sup>®</sup> scores than<br>MRI-invisible lesions ( <i>p</i> < 0.0001);<br>some lesions classified as<br>intermediate/high risk by<br>Decipher <sup>®</sup> are invisible on MRI                             |
|                              |                                                                    |                       | BCR and adverse pathology prediction                                                     | Li et al. [45]                | New imaging-based nomogram;<br>AUC (0.71, 95% CI 0.62–0.81)<br>better than Decipher® AUC (0.66<br>95% CI 0.56–0.77) and prostate<br>cancer risk assessment (CAPRA)<br>score AUC (0.69, 95% CI<br>0.59–0.79)                                             |

Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971



| Biomarker         | Description                                                                                 | Test Source             | Analysis                                                                     | Study                   | Results                                                                                                                                                                                                           |
|-------------------|---------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oncotype Dx test® | 5 reference genes<br>and 12 cancer<br>genes generating a<br>genomic prostate<br>score (GPS) | Prostate biopsy         | Association between<br>mpMRI and Oncotype<br>Dx test <sup>®</sup> GPS        | Leapman et al. [147]    | GPS differences among MRI categories for patients with Gleason pattern $3 + 4$ ( $p = 0.010$ ), not in Gleason pattern $3 + 3$                                                                                    |
|                   |                                                                                             |                         | GPS to predict adverse pathology                                             | Salmasi et al. [148]    | GPS is a significant predictor for adverse pathology ( $p < 0.001$ )                                                                                                                                              |
| ConfirmMDx®       | Alterations in DNA<br>methylation                                                           | Prior negative biopsies | mpMRI PIRADS score<br>lesions after<br>ConfirmMDx <sup>®</sup><br>sampling   | Artenstein et al. [149] | Negative ConfirmMDx <sup>®</sup> test is in<br>accordance with negative MRI<br>results (71.4%). ConfirmMDx <sup>®</sup><br>sampling may be useful as a<br>fusion-targeted biopsy rather<br>than systematic biopsy |
| Prolaris test®    | 46-mRNA genomic<br>test                                                                     | Prostate biopsy         | Associations between<br>MRI and the expression<br>levels of cell cycle genes | Wibmer et al. [150]     | In the RP subgroup, ECE on MRI<br>( $p \le 0.001-0.001$ ) and cycle genes<br>risk scores ( $p = 0.049$ ) were<br>significantly associated with<br>Gleason score 4 + 3 or higher,<br>ECE and lymph node metastases |

Table 3. Cont.

AUC = area under the curve; BCR = biochemical recurrence; DNA = deoxyribonucleic acid; ECE = extracapsular extension; GPS = genomic prostate score; mpMRI = multiparametric magnetic resonance imaging; mRNA = micro ribonucleic acid; PCA3 = prostate cancer antigen 3; PIRADS v2 = prostate imaging reporting and data system version 2; RP = radical prostatectomy.

Ferro M, de Cobelli O, Vartolomei MD, Lucarelli G, Crocetto F, Barone B, Sciarra A, Del Giudice F, Muto M, Maggi M, Carrieri G, Busetto GM, Falagario U, Terracciano D, Cormio L, Musi G, Tataru OS. Prostate Cancer Radiogenomics-From Imaging to Molecular Characterization. Int J Mol Sci. 2021 Sep 15;22(18):9971

### RENAL CELL CARCINOMA



Table 1. Summary of 20 reviewed articles on radiogenomics in clear cell renal cell carcinoma. Nature of feature extraction is indicated by "Radiologist" if features are scored by one or more radiologists. Elsewise, software derived features are indicated by "Computational". Number of selected features indicated in parenthesis. TAT (total adipose tissue), VAT (visceral adipose tissue), AUC (area under the curve), OR (odds ratio), HR (hazard ratio), CSS (cancer specific survival), OS (overall survival), PFS (progression free survival).

| Author                | Title                                                                                                                                                                         | Year of Publication | Patient # | Feature<br>Extraction<br>(Number) | $\pm$ Machine<br>Learning | Image Phase Used        | Genes Studied     | Outcome                                                                                                                                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------------------------------|---------------------------|-------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Karlo et al. [9]      | Radiogenomics of<br>Clear Cell Renal Cell<br>Carcinoma:<br>Associations between<br>CT Imaging Features<br>and Mutations                                                       | 2014                | 233       | Radiologist (10)                  | -                         | CT                      | BAP1<br>VHL KD5MC | BAP1 and KD5MC: renal<br>vein invasion (OR 3.50 and<br>3.89)<br>VHL: ill-defined margin (OR<br>0.49), nodular enhancement<br>(OR 2.33), intratumoral<br>vasculature (OR 0.51) |
| Shinagare et al. [10] | Radiogenomics of clear<br>cell renal cell<br>carcinoma: Preliminary<br>findings of the cancer<br>genome atlas-renal cell<br>carcinoma<br>(TCGA-RCC) imaging<br>research group | 2015                | 103       | Radiologist (6)                   | _                         | Contrast-enhanced<br>CT | BAP1<br>MUC-4     | BAP1: III-defined margin and<br>calcification<br>MUC4: Exophytic growth                                                                                                       |
| Greco et al. [11]     | Relationship between<br>visceral adipose tissue<br>and genetic mutations<br>(VHL and KDM5C) in<br>clear cell renal cell<br>carcinoma                                          | 2021                | 97        | Computational<br>(3)              | _                         | СТ                      | KDM5C vs. VHL     | KDM5C higher TAT and VAT<br>area than VHL                                                                                                                                     |
| Feng et al. [12]      | Identifying BAP1<br>Mutations in Clear-Cell<br>Renal Cell Carcinoma<br>by CT Radiomics:<br>Preliminary Findings                                                               | 2020                | 54        | Computational<br>(58)             | + (Random<br>Forest)      | СТ                      | BAP1              | AUC 0.77                                                                                                                                                                      |
| Kocak et al. [13]     | Machine<br>learning-based<br>unenhanced CT texture<br>analysis for predicting<br>BAP1 mutation status<br>of clear cell renal cell<br>carcinomas                               | 2020                | 65        | Computational<br>(6)              | + (Random<br>Forest)      | СТ                      | BAP1              | AUC 0.897                                                                                                                                                                     |

Gopal N, et al. The Next Paradigm Shift in the Management of Clear Cell Renal Cancer: Radiogenomics-Definition, Current Advances, and Future Directions. Cancers (Basel). 2022 Feb 4;14(3):793.



## Assessment of response to treatment

- The correct assessment of response in the treatment is fundamental in defining the success or failure of treatment interventions.
- Prediction of early response would improve treatment selection in these patients.
  - Radiomics and radiogenomics could be very useful.



# Technical problems, limitations and challenges (I)



- CT acquisition
- Reconstruction
- Kernels
- Tube currents
- Slice size
- Voxel size
- Grey level
- Delay of contrast enhancement



# Technical problems, limitations and challenges (II)

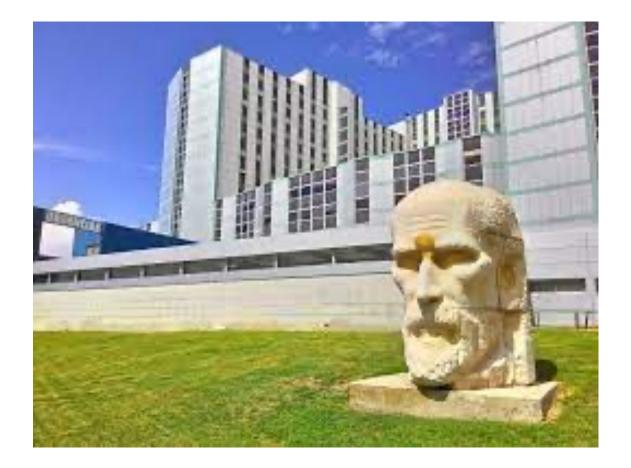


- Standardization of protocols is therefore important in clinical applications
  - Also many of the comparisons between diagnostic entities using radiomics are subjective and not clinically applicable.








- Radiomics is a promising non-invasive tool for the diagnosis and clinical management of tumors and the patients.
- The usefulness of radiomics has been studied in the differential diagnosis of benign, premalignant and malignant lesions.
- In addition, it can help in the more precise definition of lesions for chemotherpay and radiotherapy and assessment of response.
- Radiomics provides a more adequate and reproducible measurement of the tumor than other methods.
- In addition, the combination of radiomics and genomics has a promising future to biomarkers.
- However, image acquisition protocols and radiomic analysis systems need to be standardized and validation cohorts are needed.
- Further studies are needed to consolidate the available data.





#### THANK YOU





